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The theory of flux-corrected transport (FCT) developed by Boris and Book [.I. Co~~pur. 
P~JLV. II (1973) 38; 18 (1975) 248; 20 (1976) 3971 is placed in a simple, generalized format, 
and a new algorithm for implementing the critical flux limiting stage in multidimensions 
without resort to time splitting is presented. The new flux limiting algorithm shows the use 
of FCT techniques in multidimensional fluid problems for which time splitting would 
produce unacceptable numerical results, such as those involving incompressible or nearly 
incompressible flow fields. The “clipping” problem associated with the original one dimen- 
sional flux limiter is also eliminated or alleviated. Test results and applications to a two 
dimensional fluid plasma problem are presented. 

I. INTRODUCTION: FCT DEFUSED 

Consider the following system of equations 

w, +“I$ = 0 (1) 

where w and f are vector functions of independent variables x and t. A simple example 
of such a system of equations would be th.e one dimensional equations of ideal, 
inviscid fluid flow: 

w;i;;): f+G$-) 
3, 

where pl II, P and E are the fluid density, velocity, pressure and specific total energy 
respectively. 

We shall say that a finite difference approximation to Eq. (1) is in conservation 
(or “flux”) form when it can be written in the form 

wE”‘l = WifZ - Ax,l[F,L(,,,, -~ F,&,,:,,I (2) 

Here IV and fare defined at the spatial grid points xi and temporal grid points t”. 
and Axi = $(x~+~- x&. The Fi+(l,z) are called transportive fluxes, and are functions 
off at one or more of the time levels I”. The functional dependence of Fon fd+ws 
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the integration scheme (leapfrog, Lax-Wendroff, Crank Nicholson, donor cell, etc.) 
It is well known that higher order (order 2 and above) schemes for numerically 

integrating Eq. (1) suffer from dispersive “ripples” in II’, particularly near steep 
gradients in IV. Lower order schemes, such as donor cell, Lax-Friedrichs, or high 
order schemes with a zeroth order diffusion added, produce no ripples but suffer 
from excessive numerical diffusion. Flux-corrected transport (FCT) is a technique 
developed by Boris and Book [l-3] which embodies the best of both of the above 
worlds. III its simplest terms, FCT constructs the net transportive flux point by point 
(norz linearly) as a weighted average of a flux computed by a low order scheme and a 
flux computed by a high order scheme. The weighting is done in a manner which 
insures that the high order flux is used to the greatest extent possible without intro- 
ducing ripples (overshoots and undershoots). This weighting procedure is referred 
to as “flux-correction” or “flux-limiting” for reasons which shall become clear later. 
The result is a family of transport algorithms capable of resolving moving contact 
discontinuities over 3-4 grid points, and shock fronts over 2 grid points, l~ithout 
undershoot or overshoot [l-3]. Formally, the procedure is as follows: 

(1) Compute 4t+,li2, , the transportive flux given by some low order scheme 
guaranteed to give monotonic (ripple-free) results for the problem at hand 

(2) Compute F/$112) . ’ the transportive flux given by some high order scheme 

(3) Define the “antidiffusive flux”: 

(4) Compute the updated low order (“transported and diffused”) solution: 

wf” = win - dx;1[F:+(l/2) - F&:2) 1 

(5) Limit the Ai+(I;n) in a manner such that I$ llzfl as computed in step 6 below 
is free of extrema not found in M+ or V: 

C 
4+(14) = G+h,e)- 4 i&/2) 3 0 G Ci+!1,2) < 1 

(6) Apply the limited antidiffusive fluxes: 

The critical step in the above is, of course, step 5 which will be discussed shortly. 
In the absence of the flux limiting step (Af+(l12, = Ai+(I,& II)‘~+~ would simply be 
the time-advanced high order solution. 

We note that this definition of FCT is considerably more general than has been given 
previously. In this new format, the range of FCT’s applicability is seen to be quite 
large, extending to any fluid transport scheme for which the difference between a low 
order monotonic time advancement operator and a higher order operator can be 
written as an array of fluxes between adjacent grid points. This could include both 
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implicit and explicit Eulerian schemes as well as finite element and Lagrangian 
methods. For Lagrangian schemes in particular, it is possible that the resolution 
of shock waves could be improved dramatically by defining ‘“antidiiusive fluxes” 
that are equal and opposite to the fluxes due to artificial viscosity. For multidimen- 
sional Lagrangian codes, this last application was an impossibility before the develop- 
ment of the new flux limiting algorithm to be described in Sections IV and Vi. 

We also note that the hybridization techniques of Harten and Zwas [S] can be 
placed in the above format by performing some algebraic manipulation and replacing 
step 5 by an algorithm completely dierent from those to be described here. Thus the 
differences between hybridization and FCT are due entirely to the differences in the 
all-important step 5. 

II. MULTIDIMENSIONAL FLUX-CORRECTED TRANSPORT 

Before proceeding to a discussion of flux limiting, let us see how the procedure given 
above might be implemented in multidimensions. An obvious choice would be to 
use a Strang-type time-splitting procedure [S] when it can be shown that the equations 
allow such a technique to be used without serious error. Indeed, such a procedure 
may even be preferable from programming and time-step considerations. However, 
there are many problems for which time-splitting produces unacceptable numerical 
results, among which are those involving incompressible or nearly incompressible 
4ow fields. This technique is straightforward and shah not be discussed here. Instead 
we consider as an example the fully two-dimensional set of equations 

where H’, ,f? and g are vector functions of x, y, and i. In finite difference flux form we 
have 

nt1 1Vi.j = wi”.j - fl v;;[Fi+(l,a),j - F&-h!2).i + G2,i+(1:2) - Gi,i-(1/2)1 (4 

where now IV, f and g are defined on spatial grid points xd , JJ~ at time levels t!li and 
A r/,,j is a two dimensional area element centered on grid point (i, j). Now there are 
two sets of transportive fluxes F and G, and the FCT algorithm proceeds as before: 

(1) Compute Fh(liB),j and Gf,j+(lj2) by a low order monotonic scheme 

(2) Compute F&,,,,j and G&1,,, by a high order scheme 

(3) De&e the antidiffusive fluxes: 
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(4) Compute the low order time advanced solution: 

w:f”j = w;j - L.l vg::[Ff+(,,,),j - &m),i + G:i+(m) - Gii-WI 

(5) Limit the antidiffusive fluxes 

ALl/2),i = Aii(llS),~Ci+(ll?J.j 0 G Ci+hi%),j < 1 

A&+(l/z) = Ai,j+(~/z)Ci,j+(l/e) 0 G G&(1,2) d 1 

(6) Apply the limited antidi.tTusive fluxes: 

w;;’ = wz”; - d Vz~;[A,&,s~,j - &w + A:i+w - &-d 

As can be easily seen, implementation of FCT in multidimensions is straightforward 
with the exception of Step 5, an algorithm for which is the subject of this paper. First, 
however, let us see how flux limiting is presently implemented in one spatial dimension. 

III. FLUX LIMITING IN ONE SPATIAL DIMENSION-THE ORIGINAL ALGORITHM 

The original algorithm for flux-limiting in one dimension was given by Boris and 
Book [I]. In our notation it is: 

Si+(1/2) = I -+; 
if -4+(l~z) 2 0 
if -4+m < 0 

The intent of this formula is that antidiffusive fluxes should neither create new extrema, 
nor accentuate already existing extrema, in the transported and diffused solution H@. 
That the above formula does, in fact, perform precisely this task can be verified 
by the reader with relative ease. We shall examine here some of the less obvious 
properties of this formula. In the process we shall gain insight into which of these 
properties we shall wish to carry over into a multidimensional flux limiter. We 
first observe that certain quantities do not appear in the above formula: (1) I& - @, 
the first difference of ivbd at the point where the antidiffusive flux Ai+lllz) is evaluated; 
and (2) antidiffusive fluxes other than A,+cllf) . This last property is the most notable 
since there are conceivably two fluxes directed into or out of a cell. A formula guaran- 
teeing that the two fluxes acting in concert shall not create ripples would apparently 
require a knowledge of both. We shall return to this point momentarily. 

In Fig. I we show the eight possibIe configurations of wtd in the neighborhood of 
a positive Ait(llz) (directed to the right in our diagrams). Configurations l-4 show the 
%ormal” situation, with Ai+(llz) having the same sign as $, - 1~:“” (as might be 
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expected of an “antidiffusive flux”). We note that if either w$ - IV& or @ - ~2~ 
has a sign opposed to that of Ai+.(l,z) , as in configurations 2-4, the antidiffusive 
fhx LI~+(~,~J is completely canceled (that is, A~+o~21 = 0). This, however, is in total 
agreement with the stated intent of Eq. (5) since otherwise configuration 2 would 
allow accentuation of an existing maximum, configuration 3 accentuation of an 
existing minimum, and configuration 4 accentuation of both. In the remaining 

d DENOTES DIRECTION OF Ai+ 5. 

i-l i i+l it2 i-l i it1 i+2 i-l i i+l i+2 i-l I i+li+2 

x 

PIG. 1. The eight possible configurations of the transported and difksed solution kd in the 
neighborhood of a positive (rightward-directed) antidiffusive flux Ai,(llP;. Note that configurations 
1 through 3 differ from configurations 5 through 8 only in the sign of the quantity (w& - w:~), 

configuration 1, the flux limiter (5) will reduce the magnitude of LI+(~;-~ sufficiently 
to guarantee that neither a maximum at grid point i + 1 nor a minimum at grid point 
i will be formed, again in precise agreement with its stated intent. 

Configurations 5-X are identical to configurations l-4, respectively, except that 
sign of IV& - wi has been reversed (The “antidiffusive fluxes” are now directed 
&WW the gradient in II@). Since the sign of w:$ - 1~:’ does not enter into the flux 
correction formula (S), the results of the formula are identical to those for the previous 
four cases: the antidiffusive fluxes are canceled for configurations 6-8 and limited 
in configuration 5 to the extent necessary to prevent a new maximum at grid point 
i + 1 and a new minimum at grid point i. Examination of configurations 6-8 reveals 
that Ai+(l,,e) actually presented no hazard insofar as extrema creation or enhancement 
(at least in moderation). Certainly there was no cause for completely canceling the 
flux. Even in configuration 5 the flux may have been limited to a greater extent than 
necessary. At first it would seem that configurations 5-S represent errors introduced 
by the simplicity of the flux limiting formula (5). However, extensive tests by this 
author indicate that in the relatively rare instances in which configurations 5-8 
occur in practice, the “errors” introduced by Eq. (5) represent, in fact, the correct 
action to take in terms of producing accurate profiles in IL++~. More importantly, 
they represent the mechanism by which Eq. (5) can guarantee that ripples are not 
formed under any circumstances, as we shall see presently. 

Consider two antidiffusive fluxes, acting in concert, attempting to produce or 
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accentuate an extremum. We therefore have A. 2+(118) and Ai-(l/n) either both directed 
toward, or both directed away from grid point i. We see from Fig. 1 that, in general, 
an antidiffusive flux directed opposite to the gradient in I@ will be completely canceled. 
Therefore the only cases of fluxes acting in concert that we need be concerned with 
are those where two adjacent fluxes are both parallel to the local gradients in @. 
These are precisely the cases of already existing extrema, in which case both fluxes 
will be canceled (as in configurations 2-4). This is the reason that Eq. (5) needs no 
information on any antidifliusive ff ux other than Ai+(lif) . 

In Fig. 2 we see that the above-mentioned assumptions regarding antidiffusive 
fluxes acting in concert break down completely in multidimensions. It is possible in 
more than one dimension for more than one antidiffusive flux to be directed into or 

i-l I 
- 

X 

FIG. 2. Perspective view of a two dimensional profile of the transported and diffused solution 
#, showing the four possible antidiffusive fluxes tiecting the grid point (i, j), the directions of which 
are indicated by arrows. Note that all of the fluxes are parallel to the local gradient in wtd (as “anti- 
diffusive” fluxes might be expected to be), and that w:tj is not an extremum. This situation is im- 
possible in one dimension, and it is precisely this impossibility which allows fluxes to be limited 
without regard to neighboring fluxes (see text). In two or more spatial dimensions a flux-limiting 
formula must take into account effects due to multiple fluxes acting in concert. 

out of a cell, all of these fluxes being directed parallel to the local gradient in I.I@, 
without that cell being an already existing extremum. Therefore the problem of dealing 
with multiple antidiffusive fluxes acting in concert cannot be avoided by simply 
canceling all fluxes antiparallel to the local gradient in wtd. It is clear then that any 
formula which purports to perform flux limiting in more than one dimension without 
resort to time splitting must contain information about antidifFusive fluxes other than 
the one being limited. 

IV. FLUX LIMITING IN ONE SPATIAL DIMENSION-AN ALTERNATIVE ALGORITHM 

We describe here in one spatial dimension an alternative flux limiting algorithm 
which generalizes easily to multidimensions and which, even in one dimension, exhibits 
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z superiority to the limiter described in the previous section (Eq. (5)) with regard 
to peaked profiles. 

Referring to Fig, 3, we seek to limit the antidiffusive flux FI~+(~.‘,! snch that 

ALl!Z) = G+(l!2)Ai+(l!e) 3 0 < Cj+(1;e! < 1 

and such that &&) acting in concert with A:-(,,,, wi!! not allow 

to exceed some maximum value WY nor fall below some minimum value ~,i;~%‘~’ 
We leave the determination of IV~~ and ~~~~~~ until later. 

We define three quantities: 

Pi+ = the sum of all antidiffusive fluxes into grid point i 

R,L = 
! 
mink Qj+/Pj+) if P(” > 0 
0 1 if Pi+ = 0. 

Frc. 3. One dimensional view of the transported and diffused profile wfd, showing rhe two acti- 
diffusive fluxes Ar+(%i2) and Ai_ whose coiIective effect must be taken into account with respect 
to overshoots and undershoots in the final value of ~:+l. 

Assuming that 111% *IaX > IVES (it must be), all three of the above quantities are positive 
and l&f represents the lekt upper bound on the fraction which must multiply all 
antidiffusive fluxes into grid point i to guarantee no overshoot at grid point i. 

Similarly we define three corresponding quantities: 

Pi- = the sum of all antidiffusive fluxes ~W~J$YWX grid point i 

= max(0, Ai+u& - min(0, JL-(~~~)) (lo) 
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&- Z 
I 
min( 1, Qi--/Pi-) if Pi- > 0 
0 if Pi- = 0 1 

Again assuming that 1.~~ min < wid, we find that Ri- represents the least upper bound 
on the fraction which must multiply all antidiffusive fluxes away from grid point i 
to guarantee no undershoot at grid point i. 

Finally we observe that all antidiffusive fluxes are directed away from one grid 
point and into an adjacent one. Limiting will therefore take place with respect to 
undershoots for the former and with respect to overshoots for the latter. A guarantee 
that neither event comes to pass demands our taking a minimum: 

Cr+(l,2) = min(Rh y K) 
1 

if &hd 2 0 
min(R,+, R;+l) if Ai+(lj,) -c 0 (13) 

Furthermore, we shall call upon our pretiously described experience with the 
original flux limiter and set 

A+(,/,) = 0 if Ai+(1,2)(w:d,, - wi”) < 0 

and either Ai+(&Wf$ - w:g < 0 

or Ai+(l,/z)(W:d - w:!T,> < 0 (14) 

In practice the effect of Eq. (14) is minimal and is primarily cosmetic in nature. This is 
because cases of antidiffusive fluxes directed down gradients in wtd are rare, and even 
when they occur usually involve flux magnitudes that are small compared to adjacent 
fluxes. If Eq. (14) is used, it should be applied before Eq. (6) through (13). 

We come now to a determination of the quantities @” and wpin in Eqs. (8) 
and (11). A safe choice is 

mas w.i = max(n{?, , wEd, NJ.&) (15) 
min 

Wi = min(w:d, , wi”, wf$,) (16) 

This choice will produce results identical with those of Eq. (5) in one dimension, 
including the occurrence of the “clipping” phenomenon to be mentioned shortly. 

A better choice is: 

wia = max(w,“, wi”) 
(17) max 

W.i = max(wi”_, , wia, w~i”,~) 

wi’ = min(win, w:“) (18) 

).q”ln = min(w-, , U’ib, Wf,,) 

This choice allows us to look back to the previous time step for upper and lower 
bounds on w’?+l. 

It is clear ihat these two methods of determining wF”~ and w,pli” represent only 
a small subset of possible methods. The alternative flux limiter described in Eqs. (6) 
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through (14) admits of any physically motivated upper and lower bound on I$” 
supplied by the user, introducing a flexibility unavailable with the original flux limiter 
(5). However, with the exception of one example in the next section [w&b shows 
graphicaliy the potential power of this flexibility), we shall henceforth use Eq. (i’7j 
and (18) to evaluate ,mar IV and ~~~n~in in one dimension. 

V. COMPUTATIONAL EXA~WLES-ONE DWENSION 

We consider one dimensional passive convection in a constant velocity field. We 
have Eq. (1) with IV = p and f = pv with v = constant. We choose our transport 
algorithm to be that given in [3] for LPE Shasta. On the standard square wave tests 
we find that our results for the original flux limiter (5) and for the alternative flux 
limiter (6) through (14) are identical to within round-off (the same is true for traveiing 
shock waves in the coupled one dimensional equations of ideal inviscid Auid flow). 
To find differences between the limiters in one dimension we must look to passive 
convection of peaked profiles. We choose the problem given by Forester [5], a gaussian 
of half-width 2 Ax. In Fig. 4 we show the results after 600 iterations for the triviaI 

FOG. 4. Gmparison of old and new flux limiters on narrow gaussian profile in passive convection 
for the trivial case of a vanishing velocity field. The transport algorithm is LPE SHASTA. Note :he 
“clipping” phenomenon associated with the old limiter. 

case v = 0. On the left we see the fimilar “clipping” phenomenon with the original 
flux limiter, caused by a zeroth order tiusion term in the low order portion of tlze 
LPE Shasta algorithm. This diffusion term causes the peak in H@ to be smaller than 
the peak in I{‘~~, leaving the original flux limiter (5) with no way of resurrecticg the 
original peak. This process occurs repeatedly, eventually leaving the characteristic 
three point top. The alternative flux limiter, shown on the right, “‘remembers” the 
old value of the peak and is able to resurrect it each time step. 



344 STEVEN T. ZALESAK 

In Fig. 5 we show the same problem after 600 iterations but this time for 
E E v At/Ax = 0.1. We see that clipping occurs with both flux limiters, but to a 
lesser extent with the alternative flux limiter (6) through (14). 

At this point we removed the flux limiter entirely and again ran the problem 600 
iterations with E = 0.1. The results convinced us that the amplitude and phase 
properties of the high order portion of LPE Shasta were incapable of resolving the 
high wave numbers of which the gaussian is composed. Consequently it was decided 

LPE SHASTA 

5 

i 

ki -dt -u--a 

FIG. 5. Same comparison as in Fig. 4 except that the velocity field is now finite. The profile 
has been convected through 60 grid points. Note the reduced clipping with the new flus limiter. 

to switch to a higher order algorithm, a leapfrog-trapezoidal transport algorithm which 
uses eighth order spatial differences. The algorithm is, then, second order accurate 
in time and eighth order in space, with an amplification factor that is effectively unity 
across the entire Fourier spectrum, and phase properties considerably better than 
those of fourth order algorithms. The leapfrog portion of this algorithm is identical 
to the eighth order Kreiss-Oliger scheme [6]. A fourth order version of this same 
algorithm was used later in the two-dimensional solid body rotation tests. We ran 
the gaussian test problem again 600 iterations with E = 0.1 with no flux limiter and 
were convinced that the algorithm did indeed have the resolving power necessary 
to do the problem. A low order scheme, donor cell plus a zeroth order diffusion 
term with coefficient &, was added to complete the FCT algorithm, which we dub 
2-8 leapfrog-trapezoidal. A more detailed description of this algorithm is found 
in the appendix. 

Figure 6 shows the results of 2-8 leapfrog trapezoidal run 600 iterations with 
E = 0.1 with both the original and alternative Aux limiters. The results are better 
than those in Fig. 5, and again the alternative flux limiter proves superior, but nonthe- 
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APEZOIDAL 2-8 LEAPFROG-TRAPEZOIDAL 

600 CYCLES 

* ANALYTIC 

X OLD LIMITER 

0 NEW LiMlTER 

i 

FIG. 6. Same comparison as in Fig. 5, but with a more accurate transport algorithm (2-g ieapfrog- 
trapezoidal). Again note the reduced clipping with the new Aux limiter. 

less disappointing. The clipping would appear to be due entirely to the flux Limiters, 
not to the phase or amplitude properties of the high order scheme. 

A careful examination of exactly what happens to a one point peak in a 5nite 
difference code reveals the real source of the above problem. Consider a profile 

x 

FIG. 7. Time sequence of profiles produced by a “perfect” convection scheme acting on the 
variable p with E = 0.2. The actual analytic profile is show as a solid line, and the grid point values 
are shown as dots. Note that at time to + 4dt a grid point value at (i f  1) has been generated which 
is higher than any grid point value at the previous time step. This is the reason that even the new 
fiux limiter, using Eq. (17) and (18) for rPax and tPin, must still “ciip.” 

with a local peak at grid point i in passive convection at constant velocity >O. at 
each succeeding time step the function value at grid point i will decrease and that 
at i + 1 will increase (Fig. 7). Eventually they will both reach some intermediate 
value, and the actual original peak value will not appear anywhere on the grid: 
since it’s position now lies midway between two grid points. At this point even the 
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new flux limiter (6) through (14), (17) and (18), has lost the information it needs 
to allow the peak to be resurrected in suceeding time steps, and will “clip” the new 
peak at grid point i + 1 as it tries to form, based on the assumption that it is, in fact, 
an overshoot. The effect is magnified, since the clipping itself introduces phase errors 
in succeeding iterations, the net result being the profiles depicted in Fig. 6. 

It is clear, then, that if we are to successfully treat a one-point extremum within 
the context of FCT we must use information other than just the grid point values 
themselves. In what follows we shall utilize the flexibility of the alternative flux 
limiter to use as wax and w@n any values that we choose. In Fig. I? we show a 
possible way of extracting inf:rmation about extrema which do not lie exactly on a 

lgealr grid point at the time. Basically we define l$.i+cli2, to be the w  value at the intersection 
of the line segments formed by connecting the point (X~-~ , w:!~) with (xi , wid) and 
the point (X~+~ , wjf,) with (x+~, w$). If the x coordinate of this intersection lies 
between xi and xi+1 , then we consider this wC~&, to be an allowable wm= or wmin 
for either wT+l or w;$. We now have 

wia = max(win, w:“) 

max w,: = peak 
max(wL , way wZ+~ , wi+m , wZh> 

wib = min(win, ~4~) 

min 
wi = min(w-_, , w.~‘, b wi+1 f w?:&, 3 wE(%> 

I  I  I  I  

i-l I i-+-l i+2 
x 

(19) 

cw 

FIG. 8. A possible scheme for extracting information about extrema which exist between grid 
points at a given point in time. An extremum is assumed to exist between grid points i and i + 1 
if the intersection of the right and left sided extrapolations of IV td has an x coordinate between xi 
and X~+~ The w coordinate of the intersection is then used in the computation of wrnax and IV& 
(see text). 
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Equations (19) and (20) together with Eqs. (6) through (14) now determine the 
alternative flux limiter (for this section only). 

In Fig. 9 we show the results of using Eqs. (19) and (20) to determine II’~~ and I$??‘~ 
on the gaussian test problem run 600 iterations with E = 0.1. Clearly the problem has 
been solved-we recover the gaussian profile with no dispersive ripples and minimal 
loss in amplitude. We have not performed this test merely to show the power of the 
extrapolation technique just described to determine ~t!p~ and M?.?~. Rathey ?his 

151 

I 
I 

10 

P 
i I 

2-8 LEAPFROG-TRAPEZOIDAL 
600 CYCLES 

- ANALYTIC 

o NEW LIMITER WITH wPeak 
COMPLjTATlON (SEE TEXT) 

FIG. 9. Same as Fig. 6, except that Eq. (19) and (20), which utilize the 1~ lgesk computation illustrateed 
in Fig. 8, are used to compute lvmax and ~~~~~~ in the new flux limiter. Values for the old flux Limiter, 
since they are identical to those shown in Fig. 6, are not shown. Note that the clipping has been 
virtually eliminated. 

calculatiorz serves to show the power of using i~~jkmation other than that avuilabk on 
the one dimensional grid. In multidimensional Bux limiting, this information comes 
from the other coordinate directions, as we shall see. 

VI. FLUX IJMITING IN MULTIDIMENSIONS 

The alternative flux limiting algorithm presented in Section IV generalizes trivially 
to any number of dimensions. For the sake of completeness we present here the 
algorithm for two spatial dimensions. 

Referring to Fig. 10, we seek to limit the antidiiusive fluxes Ai+(l/z),j and A ‘.L~ .x L:? ,1!2r 
such that 
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w td PROFILE: 

j+l t . 

1 

Y 

j-j ! Ai,j-% , 

i-l I i+1 

. 
x 

FIG. 10. Two dimensional profile of the transported and diffused values MP, showing the four 
antidifGve fluxes Ai+(I/P),j , Ai--(I~P).j , Ai,i+(lia) , and A, j-(112) whose collective effect must be taken 
into account with respect to overshoots and undershoots in the linal value of wrfl. A perspective 
view of a similar profile is shown in Fig. 2. 

and such that A,ct(l,2,,j , A&IZj,j , A&+cllz, , and A&Il,, acting in concert shall not 
cause 

to exceed some maximum value IV?? nor fall below some minimum value w$‘. 
Again we compute six quantities completely analogous to those computed in Eq. (7) 

through (12): 

Plf = the sum of all antidiffusive fluxes into grid point (i,j) 

= ma@, &hhd - mW, &+wd.J 

+ max@, &j-d - min@, Aj+hd 

Qti = (w:? - NJ:;) A Vi,j 

Rtj= o 
I 
min(l, Q&/P&> if Plj > 0 

if P,‘, = 0 

Pcj = the sum of all antidiffusive fluxes away from grid point (i, j) 

= mado, A+w,~ - mW, &4d 

+ max(O, &,i+d - min(O, &~d 

Qzj = (w;fj - wrjfn) d V,,j 

R-. _ 

1 
min(L Qi,KJ if PxTj>O 

i,) - 0 if Pi,f = 0 

(7’) 

63’) 

(9’) 

VW 

(11’) 

(12’) 
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Equation (13) becomes 

ci,.i+(liZ) = 
min(R~j+, , R,j) if AE;jj-(1,.2) > 0 

min(RTj , R;,,,) if A(,j+(l/2) < 0 

while Eq. (14) becomes 

AiL(ll?),j = O  
if Ai+(l.‘$),j(W:d+l,j - lV:fj> < 0 

and either A. id 
z+(l ‘2),j ( M’i+2.j - Wi+l,.; Id )<O 

or -4f+(l;t).j(M’jfj - 1V:fl.j) < 0 (!I’) 

Ai,j+(l:-2) = 0 if Ai,j+(l!a)(“:~j-l - WiIl,) < 0 

and either Ai,j+(lj2)(~~~~~j+s - IV&) < 0 

Ol- Ai,j+(l f,)(lV?yj - U’it;-1) < 0 

and Eq. (17) and (18) become 

Again, the effect of Eq. (14’) is minimal, but if it is used it should be applied be@e 
Eq. (6’) through (13’). Note that our search for I.v~~~ and IV:‘” now extends over 
both coordinate directions. Where finite gradients exist in both directions, this pro- 
cedure will allow us to stop the clipping phenomenon in regions where a peak exists 
with respect to one coordinate direction but not tn the other, as we shall see in the 
next section. 

Let us comment here on the enforcement of monotonicity in more than one dimen- 
sion. E.quation (6’) through (14’), (17’) and (18’), and equations of a similar form in 
three dimensions, will in fact keep the solution within the bounds defined by ii’““” 
and il,“in. This is aimost always sufficient to remove the errors due to numerical 
dispersion (“ripples”). However in more than one dimension this condition is not 
strictly speaking identical to that of monotonicity enforcement. That is. a so:urion 
which was monotonic with respect to one of the coordinate directions, both at the 
beginning of the time step and in the “transported and diffused” solution IG~, might 
fail to be monotonic with respect to that same coordinate direction at the end of the 
time step, even though overshoots and undershoots as defined by ~~~~~~ and ~t.“~~ 
were absent. This most often occurs in problems where the quantity- of interest 
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is being transported in a direction perpendicular to a large gradient in that same 
quantity. 

For this reason it is sometimes necessary to impose stronger restrictions on the 
antidiffusive fluxes. There are several ways to accomplish this, but the simplest is 
the following: 

(1) For each coordinate direction, limit the antidiffusive fluxes in that direction 
using Eq. (6) through (14) and either (15) and (16) or (17) and (18). Note that we are 
not time splitting, since each of the coordinate directions is treated independently 
and therefore the flux limiting operators commute. If (15) and (16) are chosen, one 
can equivalently use Eq. (5) for this step. 

(2) Treat the residual corrected fluxes AC from the above step as if they were 
the uncorrected fluxes A, and apply the fully multidimensional limiter (6’) through 
(18’) or its three dimensional equivalent. 

From our limited experience it appears that the above procedure is required only 
rarely. However, for someone attempting to implement multidimensional FCT 
for the first time this procedure might be advisable since it is more likely to prevent 
the occurrence of dispersive ripples under all circumstances. The two dimensional 
calculations presented in this paper use only E.q. (6’) through (14’), (17’) and (18’). 

VII. COMPUTATIONAL EXAMPLES-TWO DIMENSIONS 

We choose as our two dimensional test problem that of solid body rotation. That is 
we have Eq. (3) with f = ~t’v, , g = MJV, , v, = --8( 4’ - yJ, and v, = Q(x - x0). 
Here Q is the (constant) angular velocity in radians/set and (x,, , yoj is the axis of 

I 

%-----100 CELLS 

FIG. 11. Schematic representation of two dimensional solid body rotation problem. Initially IV 
inside the cut-out cylinder is 3.0, while outside w = 1.0. The rotational speed is such that one full 
revolution is effected in 628 cycles. The width of the gap separating the two halves of the cylinder, 
as well as the maximum extent of the “bridge” connecting the two halves, is 5 cells. 
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FIG. 12. Perspective view of initial conditions for the two dimensiona! solid body rotation 
problem. Note that only a 50 x 50 portion of the mesh centered on the cylinder is displayed. Grid 
points inside the cylinder have wij = 3.0. All others have )pi,$ = 1.0. 

rotation. The configuration is shown in Fig. Il. The computational grid is 100 x !GO 
cells, dx = Ly: with counterclockwise rotation taking place about grid point (SO, 50). 
Centered at grid point (50, 75) is a cylinder of radius 15 grid points, through which 
a slot has been cut of width 5 grid points. The time step and rotational speed are 
chosen such that 628 time steps will effect one complete revohttion of the cyhnder 
about the central point. A perspective view of the initial conditions is shown in Fig, 12. 

Our high order scheme for the following tests is a fully two dimensional, fourth 
order In space, second order in time leapfrog-trapezoidal scheme, the leapfrog step 
of which is a two dimensional fourth order Kreiss-Oliger scheme [6]. The low order 
scheme is simply two dimensional donor cell plus a two dimensional zeroth order 
diifusiou term with diffusion coefficient +. A more detailed description of this a&o- 
rithm is found in the appendix. 

We wish to emphasize that the only difference between calculations in the following 
comparisons is in the flux limiting stage itself. The high order fluxes, low order fluxes, 
and hence the (unlimited) antidiffusive fluxes are all computed in the full two dimen- 
sions without using time-splitting. In each case we are comparing the fully two 
dimensional flux limiter given by Eq. (6’) through (143, (17’) and (18’) with a .G.WE 
split application of Eq. (5). Time splitting is the only way that Eq. (5) may be utilized 



NEW LIMITER 

ULD LIMITER 

FIG. 13. Comparison of perspective views of the w profile after 157 iterations (& revolution) 
with both the old and new flux limiters. The perspective view has been rotated with the cylinder, 
so that direct comparison with Fig. 12 can be made. Again we plot only the 50 x 50 grid centered 
on the analytic center of the cylinder. Features to compare are the filling-in of the gap, erosion of the 
“bridge,” and the relative sharpness of the profiles decking the front surface of the cylinder. 
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NEW LIMI-TEA 

OLD LIMITER 

FIG. 14. Same as Fig. 14, but after 628 iterations (one full revolutionj. Again note decreased 
diffusion with new flux limiter. 
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in a multidimensional problem. Note that in the latter case we are not time splittillg 
the entire transport operator, but only the flux limiter (5). In this way we are testing 
only the limiters themselves. 

In Fig. 13 we show a perspective view of the two calculations after 4 revolution 
(157 iterations). Figure 14 presents a comparison of the results of the two calculations 
for one full revolution (628 cycles). Two features are obvious. The first is a much 
greater filling-in of the slot with the time split Eq. (5) than with the fully two dimen- 
sional flux limiter. The second is the loss of the bridge connecting the two halves of 
the cylinder in the case of the time-split application of Eq. (5). Less obvious is the 
lack of clipping of the peaked profiles defining the front surface of the cylinder for the 
case of the fully multidimensional limiter. Clearly this is due to the fact that the multi- 
dimensional flux limiter can look in both directions to determine whether or not a 
genuine maximum exists. Note that there are two factors working in favor of the 
fully multidimensional flux limiter: (1) the ability to look in both directions to find 
minima and maxima, as just mentioned; and (2) the ability to scan both ~2~ and w:: 
to find maxima and minima. Both of these factors are responsible for the improved 
profiles. 

VIII. THE STRIATIONS CODE-A TWO-DIMENSIONAL INCOMPRESSIBLE FLUID CODE 
USING FULLY MULTIDIMENSIONAL FCT 

A two dimensional (x, y) plasma cloud initialized in a region of constant magnetic 
field B0 directed along the 2 axis, with an externally imposed electric field E, directed 
along the 4 axis will tend to drift in the E, x B0 direction (along the negative 9 axis) 
(see Fig. 15). If the ion-neutral collision frequency is finite, Pedersen conductivity 
effects will produce polarization fields which tend to shield the inner (more dense) 
regions of the cloud from E, , causing this inner portion of the cloud to drift more 
slowly than the outer portions of the cloud. This results in a steepening of gradients 
on the back side of the cloud. Arguments similar to those above, applied to infinitesi- 
mal perturbations imposed upon this back side gradient, show that the back side of 
the cloud is physically unstable to perturbations along k. For a detailed description 
of this problem, see 171. 

The equations of motion for the electron fluid are: 

(aNe/at> + v, * (N,V,) = 0 (21) 

0, . (NeVLY) = E, . V,h’, G9.l 

v, = -(c/B,) V,Y x .s (23) 

Here N, , V, , and Y are the electron density, electron velocity and perturbation 
electric field potential respectively, and 0, is the two dimensional divergence operator 
$(a/&) +$(a/+). The magnitudes of B, and E, are 0.5 gauss and 5 millivolts per 
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meter respectively. Our rest frame here is that of the (c/I+,) E, x f velocity. A few 
trivial vector identities will convince the reader that V, * V, = 0, meaning that rhe 
electrons move incompressibly. Clearly time-splitting the transport operator would 
be disastrous here, and a fully two dimensional scheme is required. In fact, the 
computational difficulties experienced in trying to solve this problem using time-split 
applications of one dimensional FCT algorithms were the primary motivating force 
in the development of the multidimensional flux Gmiter. The symptoms of the 

PLASMA DENSITY 

ENHANCEMENT 

a) t=O 

0 

0 0 

b) t>o 0 0 

8 
FIG. 15. Schematic representation of the development of a plasma cloud (plasma density increas- 

ing toward the center) in crossed electric and magnetic fields. Superimposed on the bulk E, :: B, 
motion is a steepening of the rearward side of the cloud. This same side is physically unstable :o 
small perturbations. 

numerical difficulty were the generation of nonphysical electron densities, This was 
traced to the false compressibility of the incompressible fluid when seen in each of 
the splitting directions (consideration of only the x or 3’ components of the electron 
velocity field yields a non-vanishing divergence). 

Equation (22) is solved for Y using an elliptic solver, and Eq. (23) then yields the 
electron velocity field. We then utilize exactly the same multidimensional FCT 
transport algorithm used in the previous section for solid body rotation to integrate 
Eq. (21) in time. 

Our computational mesh consists of 40 grid points in the 2 direction, 160 grid points 
in the 9 direction, periodic boundary conditions in both directions, and 4.x- 
44. = 0.31 km. Our “cloud” consists of a 1-D gaussian: 

N,(x, y) = 2\1,(1 + 1()(+-?:“6p 

where No is the ambient background electron density and y0 is the spatial center of 
the gaussian distribution. Superimposed upon this distribution is a random .w-depen- 
dent perturbation with a maximum amplitude of 3 percent. 

Figures 16-20 show isodensity contours of NJN, for -the above configuration at 
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T= OSEC 

u. u 
x (KM) 

FIG. 16. lsodensity contours of plasma density at t = 0 sec. The initial destribution for N,/NO 
is a gaussian in y, centered at y  = 12.1 km, plus a small random perturbation in x. Contours are 
drawn for Ne/N, = 1.5, 3.5, 5.5, 7.5 and 9.5. The area between every other contour line is cross- 
hatched. Only 120 of the 160 cells actually used in the JJ direction are displayed. Boundary conditions 
are periodic in both directions. In our plot B, is toward the reader, and E. is directed toward the 
right, and we have placed outselves in a frame moving with the (c/j B. 133, x B, velocity. The upper 
portion of the gaussian is physically unstable to perturbations, while the lower half is (linearly) 
stable. 

various times in the integration. It is seen that, as expected, the back of the cloud 
(the upper half in the plots) is unstable, growing linearly in the very early stages of 
development. Non-linear effects soon enter the physics, however, as each striation 
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T= lO& SEC 
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FIG. 17. Same as Fig. 16, but for t = 108 sec. Note slow linear growth on unstable side. 

successively bifurcates, producing smaller and smaller scale structures, in agreement 
with the results of the ionospheric barium cloud releases which we are attempting 
to mode!. Two points which bear on the numerics should be noted: (I) the int.ense 
gradients dictated by the physics are not diffused away, nor do there appear in the 
problem any of the “ripples” associated with numerical dispersion which normally 
appear when steep gradients try to form; (2) precisely because we did not have to 
resort to time-splitting, none of the usual time splitting phenomena, such as temporal 
density oscillations and spurious density values, are evident. 
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T= 204 SEC 

u. u 2. / 
X (KM1 

FIG. 18. Same as Fig. 16, but for t = 204 sec. Growth is now much more rapid, and we are 
entering a highly nonlinear regime. 

CONCLUSIONS 

We have shown that the algorithm presented in Eq. (6’) through (Id’), (17’) and 
(18’) does, in fact, represent a workable multidimensional Aux limiter. In addition, 
due to the flexibility in determining overshoot and undershoot criteria inherent in 
the method, the algorithm produces results which are consistently equal or superior 
to those produced using a time-split version of the original flux limiter (5), at least 
for the admittedly limited class of problems presented here. 
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T= 304 SEC 

37m2 7 

n n 3 
" . "  L. I  

X (KM! 

FIG. 19. Same as Fig. 16, but for t  = 304 sec. Development is fully nonlinear, as the intense 
gradients and associated high Fourier wave numbers become apparent. 

For multidimensional problems where time splitting is unacceptable, or for 
problems where the “clipping” phenomenon associated with the original flux limiter 
(5) is a serious problem, the new algorithm presented here represents the only way 
that FCT may be implemented. For these problems the choice is clear, for there is 
only one option. Yet even in situations where the constraints mentioned above do not 
apply, benefit may be gained by implementing the new aigorithm rather than time 
splitting Eq. (5). We do not yet have enough experience to give any guidelines, and 
can only ask the prospective user to try the method. 
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0.0 

FIG. 20. Same as Fig. 16, but for I = 407 sec. Several plasma bifurcations are apparent, in 
agreement with the experimental results from ionospheric barium cloud releases, and we have maxim- 
um to minimum density variations resolved over only 2 cells. 

Certainly the possibilities for modifying the basic scheme are endless. One could, 
for instance, limit the antidiffusive fluxes only with respect to maxima, or to minima; 
or he could limit the fluxes sequentialZy for maxima and minima, rather than limiting 
maxima and minima simultaneously in the manner presented here (this last pro- 
cedure will introduce an asymmetry between the treatment of maxima and minima 
which may or may not be desirable). Even within time-split codes there are possi- 
bilities. One could time split the one dimensional form of the new algorithm rather 
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than time splitting Eq. (5); or fully multidimensional flux limiting could be performed 
at the end of each sweep of a time-split scheme. 

On NRL’s Texas Instruments ASC computer, the calculations presented in 
Section VII required 93 seconds and 125 seconds of CPU time for the time-split 
and fully multidimensional cases respectively, a cost penalty of slightly more than 
30 7: for the multidimensional limiter. The Fortran coding was entirely vectorized 
in both calculations. Of course this extra cost is highly problem dependent. For 
instance the striations code described in Section VIII spends 88 7; of its time solving 
Eq. (22j, making the net cost penalty of fully multidimensional flux limiting only a 
few percent. 

APPENDIX: BRIEFDESCRIPTIONOFLEAPFROG-TRAPEZOIDALTRANSPORTALGOR~TH~~~ 

We seek finite difference approximations to the equation 

ll’t +& = Q (Al> 

We assume that at the beginning of a time step, values of \tv, and fi are known at grid 
points xi and at time levels t - 4 t and t. The leapfrog-trapezoidal finite difference 
approximation to Eq. (Al) in flux form is: 

Here Ff = F(ft) and F” E F(f *j. Note that here our fluxes Fi+cll,) differ from those 
described in the text by factors of 24t and 4t in Eq. (A2) and (A4) respectively. 

The trapezoidal step Eq. (A3) and (A4) strongly damps the computational modz 
generated in the leapfrog step Eq. (A2). Time centering in both steps guarantees 
second order accuracy in time. The trapezoidal step was implemented at each iteration 
for the calculations presented in Section VII, and at every fourth iteration for those 
presented in Sections V and VIII. 

If 4xi is independent of i, the following difference forms give the indicated order 
of spatial accuracy: 

Second order: 

Fourth order: 
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Sixth order: 

F. ~+(I!21 = %(.h+l +.hl - i%(J;+z +A-,) + &f(.h+s + h-2) 

Eighth order: 

F. 2+(1/Z) = Em+1 + h) - E%.h+2 +A-,) + &(h+2 +A-,> - &(&fB +A-,) 

The above fourth and eighth order forms are used as the high order fluxes in the main 
body of this paper. 

The low order flux of the leapfrog-trapezoidal FCT schemes is simply donor cell 
plus a zeroth order diffusive flux with coefficient 4. The donor cell algorithm requires, 
that f = UW, where u is a convective velocity. Specifically, 

&1,2) = %.+b!PG/2~ - t xi+1 - ( X&oI - WiO) At-1 

where 

%+(1.‘2) = 4(% + %+,> 

DC 

!  

WiO 

*“i+(1/2) = 0 
if wlje) 3 0 

Wit1 if ui+(lP2) < 0 

for leapfrog step 
for trapezoidal step 

A detailed description and analysis of these and other high order FCT algorithms 
will be discussed in a forthcoming report by the present author. 
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